metabelian, supersoluble, monomial, A-group
Aliases: C53⋊8C4, C52⋊9F5, C5⋊1(C5⋊F5), C53⋊C2.1C2, SmallGroup(500,48)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — C53 — C53⋊C2 — C53⋊8C4 |
C53 — C53⋊8C4 |
Generators and relations for C53⋊8C4
G = < a,b,c,d | a5=b5=c5=d4=1, ab=ba, ac=ca, dad-1=a3, bc=cb, dbd-1=b3, dcd-1=c3 >
Subgroups: 2176 in 192 conjugacy classes, 66 normal (4 characteristic)
C1, C2, C4, C5, D5, F5, C52, C5⋊D5, C5⋊F5, C53, C53⋊C2, C53⋊8C4
Quotients: C1, C2, C4, F5, C5⋊F5, C53⋊8C4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)
(1 7 84 59 34)(2 8 85 60 35)(3 9 81 56 31)(4 10 82 57 32)(5 6 83 58 33)(11 110 86 61 36)(12 106 87 62 37)(13 107 88 63 38)(14 108 89 64 39)(15 109 90 65 40)(16 115 91 66 41)(17 111 92 67 42)(18 112 93 68 43)(19 113 94 69 44)(20 114 95 70 45)(21 120 96 71 46)(22 116 97 72 47)(23 117 98 73 48)(24 118 99 74 49)(25 119 100 75 50)(26 125 101 76 51)(27 121 102 77 52)(28 122 103 78 53)(29 123 104 79 54)(30 124 105 80 55)
(1 124 24 19 14)(2 125 25 20 15)(3 121 21 16 11)(4 122 22 17 12)(5 123 23 18 13)(6 104 117 112 107)(7 105 118 113 108)(8 101 119 114 109)(9 102 120 115 110)(10 103 116 111 106)(26 50 45 40 35)(27 46 41 36 31)(28 47 42 37 32)(29 48 43 38 33)(30 49 44 39 34)(51 75 70 65 60)(52 71 66 61 56)(53 72 67 62 57)(54 73 68 63 58)(55 74 69 64 59)(76 100 95 90 85)(77 96 91 86 81)(78 97 92 87 82)(79 98 93 88 83)(80 99 94 89 84)
(2 3 5 4)(6 82 35 56)(7 84 34 59)(8 81 33 57)(9 83 32 60)(10 85 31 58)(11 18 122 25)(12 20 121 23)(13 17 125 21)(14 19 124 24)(15 16 123 22)(26 71 107 92)(27 73 106 95)(28 75 110 93)(29 72 109 91)(30 74 108 94)(36 68 103 100)(37 70 102 98)(38 67 101 96)(39 69 105 99)(40 66 104 97)(41 54 116 90)(42 51 120 88)(43 53 119 86)(44 55 118 89)(45 52 117 87)(46 63 111 76)(47 65 115 79)(48 62 114 77)(49 64 113 80)(50 61 112 78)
G:=sub<Sym(125)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125), (1,7,84,59,34)(2,8,85,60,35)(3,9,81,56,31)(4,10,82,57,32)(5,6,83,58,33)(11,110,86,61,36)(12,106,87,62,37)(13,107,88,63,38)(14,108,89,64,39)(15,109,90,65,40)(16,115,91,66,41)(17,111,92,67,42)(18,112,93,68,43)(19,113,94,69,44)(20,114,95,70,45)(21,120,96,71,46)(22,116,97,72,47)(23,117,98,73,48)(24,118,99,74,49)(25,119,100,75,50)(26,125,101,76,51)(27,121,102,77,52)(28,122,103,78,53)(29,123,104,79,54)(30,124,105,80,55), (1,124,24,19,14)(2,125,25,20,15)(3,121,21,16,11)(4,122,22,17,12)(5,123,23,18,13)(6,104,117,112,107)(7,105,118,113,108)(8,101,119,114,109)(9,102,120,115,110)(10,103,116,111,106)(26,50,45,40,35)(27,46,41,36,31)(28,47,42,37,32)(29,48,43,38,33)(30,49,44,39,34)(51,75,70,65,60)(52,71,66,61,56)(53,72,67,62,57)(54,73,68,63,58)(55,74,69,64,59)(76,100,95,90,85)(77,96,91,86,81)(78,97,92,87,82)(79,98,93,88,83)(80,99,94,89,84), (2,3,5,4)(6,82,35,56)(7,84,34,59)(8,81,33,57)(9,83,32,60)(10,85,31,58)(11,18,122,25)(12,20,121,23)(13,17,125,21)(14,19,124,24)(15,16,123,22)(26,71,107,92)(27,73,106,95)(28,75,110,93)(29,72,109,91)(30,74,108,94)(36,68,103,100)(37,70,102,98)(38,67,101,96)(39,69,105,99)(40,66,104,97)(41,54,116,90)(42,51,120,88)(43,53,119,86)(44,55,118,89)(45,52,117,87)(46,63,111,76)(47,65,115,79)(48,62,114,77)(49,64,113,80)(50,61,112,78)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125), (1,7,84,59,34)(2,8,85,60,35)(3,9,81,56,31)(4,10,82,57,32)(5,6,83,58,33)(11,110,86,61,36)(12,106,87,62,37)(13,107,88,63,38)(14,108,89,64,39)(15,109,90,65,40)(16,115,91,66,41)(17,111,92,67,42)(18,112,93,68,43)(19,113,94,69,44)(20,114,95,70,45)(21,120,96,71,46)(22,116,97,72,47)(23,117,98,73,48)(24,118,99,74,49)(25,119,100,75,50)(26,125,101,76,51)(27,121,102,77,52)(28,122,103,78,53)(29,123,104,79,54)(30,124,105,80,55), (1,124,24,19,14)(2,125,25,20,15)(3,121,21,16,11)(4,122,22,17,12)(5,123,23,18,13)(6,104,117,112,107)(7,105,118,113,108)(8,101,119,114,109)(9,102,120,115,110)(10,103,116,111,106)(26,50,45,40,35)(27,46,41,36,31)(28,47,42,37,32)(29,48,43,38,33)(30,49,44,39,34)(51,75,70,65,60)(52,71,66,61,56)(53,72,67,62,57)(54,73,68,63,58)(55,74,69,64,59)(76,100,95,90,85)(77,96,91,86,81)(78,97,92,87,82)(79,98,93,88,83)(80,99,94,89,84), (2,3,5,4)(6,82,35,56)(7,84,34,59)(8,81,33,57)(9,83,32,60)(10,85,31,58)(11,18,122,25)(12,20,121,23)(13,17,125,21)(14,19,124,24)(15,16,123,22)(26,71,107,92)(27,73,106,95)(28,75,110,93)(29,72,109,91)(30,74,108,94)(36,68,103,100)(37,70,102,98)(38,67,101,96)(39,69,105,99)(40,66,104,97)(41,54,116,90)(42,51,120,88)(43,53,119,86)(44,55,118,89)(45,52,117,87)(46,63,111,76)(47,65,115,79)(48,62,114,77)(49,64,113,80)(50,61,112,78) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125)], [(1,7,84,59,34),(2,8,85,60,35),(3,9,81,56,31),(4,10,82,57,32),(5,6,83,58,33),(11,110,86,61,36),(12,106,87,62,37),(13,107,88,63,38),(14,108,89,64,39),(15,109,90,65,40),(16,115,91,66,41),(17,111,92,67,42),(18,112,93,68,43),(19,113,94,69,44),(20,114,95,70,45),(21,120,96,71,46),(22,116,97,72,47),(23,117,98,73,48),(24,118,99,74,49),(25,119,100,75,50),(26,125,101,76,51),(27,121,102,77,52),(28,122,103,78,53),(29,123,104,79,54),(30,124,105,80,55)], [(1,124,24,19,14),(2,125,25,20,15),(3,121,21,16,11),(4,122,22,17,12),(5,123,23,18,13),(6,104,117,112,107),(7,105,118,113,108),(8,101,119,114,109),(9,102,120,115,110),(10,103,116,111,106),(26,50,45,40,35),(27,46,41,36,31),(28,47,42,37,32),(29,48,43,38,33),(30,49,44,39,34),(51,75,70,65,60),(52,71,66,61,56),(53,72,67,62,57),(54,73,68,63,58),(55,74,69,64,59),(76,100,95,90,85),(77,96,91,86,81),(78,97,92,87,82),(79,98,93,88,83),(80,99,94,89,84)], [(2,3,5,4),(6,82,35,56),(7,84,34,59),(8,81,33,57),(9,83,32,60),(10,85,31,58),(11,18,122,25),(12,20,121,23),(13,17,125,21),(14,19,124,24),(15,16,123,22),(26,71,107,92),(27,73,106,95),(28,75,110,93),(29,72,109,91),(30,74,108,94),(36,68,103,100),(37,70,102,98),(38,67,101,96),(39,69,105,99),(40,66,104,97),(41,54,116,90),(42,51,120,88),(43,53,119,86),(44,55,118,89),(45,52,117,87),(46,63,111,76),(47,65,115,79),(48,62,114,77),(49,64,113,80),(50,61,112,78)]])
35 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | ··· | 5AE |
order | 1 | 2 | 4 | 4 | 5 | ··· | 5 |
size | 1 | 125 | 125 | 125 | 4 | ··· | 4 |
35 irreducible representations
dim | 1 | 1 | 1 | 4 |
type | + | + | + | |
image | C1 | C2 | C4 | F5 |
kernel | C53⋊8C4 | C53⋊C2 | C53 | C52 |
# reps | 1 | 1 | 2 | 31 |
Matrix representation of C53⋊8C4 ►in GL12(ℤ)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-2 | -2 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 |
G:=sub<GL(12,Integers())| [0,4,-2,1,0,0,0,0,0,0,0,0,1,2,-2,1,0,0,0,0,0,0,0,0,0,5,-2,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0],[0,4,-2,1,0,0,0,0,0,0,0,0,1,2,-2,1,0,0,0,0,0,0,0,0,0,5,-2,1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1],[1,-2,0,-1,0,0,0,0,0,0,0,0,0,-2,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,5,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,1,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,-1,1,1] >;
C53⋊8C4 in GAP, Magma, Sage, TeX
C_5^3\rtimes_8C_4
% in TeX
G:=Group("C5^3:8C4");
// GroupNames label
G:=SmallGroup(500,48);
// by ID
G=gap.SmallGroup(500,48);
# by ID
G:=PCGroup([5,-2,-2,-5,-5,-5,10,122,127,803,808,5004,5009]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^3,b*c=c*b,d*b*d^-1=b^3,d*c*d^-1=c^3>;
// generators/relations